Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38543163

This article reports on the synthesis of nine promising new 1,3,4-thiadiazole derivatives based on 3-aminopyridones, containing various acidic linkers. The synthesis was carried out by cyclizing the corresponding thiohydrazides 4a-c and anhydrides of glutaric, maleic, and phthalic acids upon heating in acetic acid solution. The conducted bio-screening of the synthesized new 1,3,4-thiadiazole derivatives containing different acidic linkers (butanoic, acrylic, and benzoic acids) showed that they have significant inhibitory activity against α-glucosidase (up to 95.0%), which is 1.9 times higher than the value for the reference drug acarbose (49.5%). Moreover, one of the 1,3,4-thiadiazole derivatives with a benzoic acid linker-2-(5-((6-Methyl-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)carbamoyl)-1,3,4-thiadiazol-2-yl)benzoic acid (9'b)-showed an IC50 value of 3.66 mM, nearly 3.7 times lower than that of acarbose (IC50 = 13.88 mM). High inhibitory activity was also shown by 1,3,4-thiadiazole derivatives with a butanoic acid linker (compounds 7b, 7c)-with IC50 values of 6.70 and 8.42 mM, respectively. A correlation between the structure of the compounds and their activity was also established. The results of molecular docking correlated well with the bioanalytical data. In particular, the presence of a butanoic acid linker and a benzoic fragment in compounds 7b, 7c, and 9b increased their binding affinity with selected target proteins compared to other derivatives 3-6 (a-c). Calculations according to Lipinski's rule of five also showed that the synthesized compounds 7b, 7c, and 9b fully comply with Ro5 and meet all criteria for good permeability and acceptable oral bioavailability of potential drugs. These positive bioanalytical results will stimulate further in-depth studies, including in vivo models.

2.
Int. j. morphol ; 41(6): 1837-1845, dic. 2023. ilus, tab
Article En | LILACS | ID: biblio-1528786

SUMMARY: The potential anti-inflammatory and antifibrotic activity of polyphenolic extracts of blueberry and grape was evaluated in a mouse model of lung damage induced by subcutaneous administration of bleomycin. The results of testing the polyphenolic extracts on two different systemic administration variants of bleomycin (intraperitoneal and subcutaneous) were compared. It was found that regardless of the method of bleomycin administration, indirect cross-acute and subacute damage to the pulmonary system was observed. Both patterns exhibited the same prevalence and severity. The administration of polyphenolic extracts of blueberry and grape to mice resulted in a significant decrease in theseverity of acute and subacute patterns of lung damage, suggesting their protective properties for the microcirculatory bed and a pronounced anti-inflammatory effect.


La potencial actividad antiinflamatoria y antifibrótica de los extractos polifenólicos de arándano y uva se evaluó en un modelo de daño pulmonar en ratón inducido por la administración subcutánea de bleomicina. Se compararon los resultados de las pruebas de los extractos polifenólicos en dos variantes diferentes de administración sistémica de bleomicina (intraperitoneal y subcutánea). Se encontró que, independientemente del método de administración de bleomicina, se observaba daño indirecto cruzado, agudo y subagudo al sistema pulmonar. Ambos patrones exhibieron la misma prevalencia y gravedad. La administración de extractos polifenólicos de arándano y uva a ratones dio como resultado una disminución significativa en la gravedad de los patrones agudos y subagudos de daño pulmonar, lo que sugiere sus propiedades protectoras del lecho micro- circulatorio y un efecto antiinflamatorio pronunciado.


Animals , Mice , Bleomycin/toxicity , Plant Extracts/administration & dosage , Lung Injury/chemically induced , Lung Injury/drug therapy , Polyphenols/administration & dosage , Blueberry Plants/chemistry , Vitis/chemistry , Disease Models, Animal , Lung Injury/pathology , Lung/drug effects , Anti-Inflammatory Agents/administration & dosage
3.
Pharmaceutics ; 15(9)2023 Aug 23.
Article En | MEDLINE | ID: mdl-37765157

The glucose-lowering drug metformin has been reported to have anticancer properties through unknown mechanisms. Other unknown factors that may influence its anticancer potential include the glycemic status of the patient. Therefore, the objective of this study is to determine the effect of different glucose environments on the antiproliferative potency and the cellular mechanism of action of metformin. Human breast cancer cells, MCF-7, were incubated in low, normal, elevated, and high glucose environments and treated with metformin. The antiproliferative potential of metformin and its effect on protein expression as well as its ability to induce cellular apoptosis and autophagy under different glucose environments, were determined using different molecular techniques. Metformin significantly inhibited cellular proliferation in a time- and glucose-concentration-dependent manner. In comparison to elevated glucose, low normal glucose alone induced a significant level of autophagy that was further increased in the presence of metformin. While glucose concentration did not appear to have an effect on the antiproliferative potency of metformin, the cellular basis of action was shown to be glucose-dependent. The antiproliferative mechanism of action of metformin in elevated and low normal glucose environments is mTOR-dependent, whereas, in the high glucose environment, the antiproliferative mechanism is independent of mTOR. This is the first study to report that both the antiproliferative potency and the cellular mechanism of action aredependent on the concentration of glucose.

4.
Molecules ; 28(16)2023 Aug 19.
Article En | MEDLINE | ID: mdl-37630394

In Central Eurasia, the availability of drugs that are inhibitors of the SARS-CoV-2 virus and have proven clinical efficacy is still limited. The aim of this study was to evaluate the activity of drugs that were available in Kazakhstan during the acute phase of the epidemic against SARS-CoV-2. Antiviral activity is reported for Favipiravir, Tilorone, and Cridanimod, which are registered drugs used for the treatment of respiratory viral infections in Kazakhstan. A licorice (Glycyrrhiza glabra) extract was also incorporated into this study because it offered an opportunity to develop plant-derived antivirals. The Favipiravir drug, which had been advertised in local markets as an anti-COVID cure, showed no activity against SARS-CoV-2 in cell cultures. On the contrary, Cridanimod showed impressive high activity (median inhibitory concentration 66 µg/mL) against SARS-CoV-2, justifying further studies of Cridanimod in clinical trials. Tilorone, despite being in the same pharmacological group as Cridanimod, stimulated SARS-CoV-2 replication in cultures. The licorice extract inhibited SARS-CoV-2 replication in cultures, with a high median effective concentration of 16.86 mg/mL. Conclusions: The synthetic, low-molecular-weight compound Cridanimod suppresses SARS-CoV-2 replication at notably low concentrations, and this drug is not toxic to cells at therapeutic concentrations. In contrast to its role as an inducer of interferons, Cridanimod is active in cells that have a genetic defect in interferon production, suggesting a different mechanism of action. Cridanimod is an attractive drug for inclusion in clinical trials against SARS-CoV-2 and, presumably, other coronaviruses. The extract from licorice shows low activity against SARS-CoV-2. At the same time, high doses of 2 g/kg of this plant extract show little or no acute toxicity in animal studies; for this reason, licorice products can still be considered for further development as a safe, orally administered adjunctive therapy.


COVID-19 , Glycyrrhiza , Animals , SARS-CoV-2 , Tilorone , Plant Extracts/pharmacology , Antiviral Agents/pharmacology
5.
Heliyon ; 9(4): e15370, 2023 Apr.
Article En | MEDLINE | ID: mdl-37128328

The current study aims to evaluate potential hepatoprotective effect of lingonberry, cranberry and blueberry polyphenols on carbon tetrachloride (CCL-4)-induced acute and subacute liver injury in rats. A total of 55 male Wistar rats, divided into six experimental and control groups. With the exception of the negative control group, all groups received an intraperitoneal injection of CCl-4, twice a week for 14 days. An extract of lingonberry, cranberry, blueberry polyphenols and the positive control, silymarin were administered daily via intragastric route, for 14 consecutive days. The untreated control group showed characteristic of classical oxidative stress-mediated liver damage with vacuolization of the hepatocyte cytoplasm, infiltration by immune cells and proliferation of collagen fibers, decrease in body weight and increase in liver weight; increased levels of AST and ALT in serum, an increased lipid peroxidation in the liver. However, the use of cranberry and blueberry polyphenols significantly suppressed liver damage, exerting an effect comparable to the hepatoprotective effect of the positive control. The extracts prevented and reduced inflammatory liver damage by reducing IL-6, TNF-α and IFN-γ levels. In conclusion, blueberry and cranberry extracts have a protective effect against acute and subacute CCl4-induced hepatotoxicity in rats.

6.
Int. j. morphol ; 41(1): 51-58, feb. 2023. ilus, tab, graf
Article En | LILACS | ID: biblio-1430524

SUMMARY: An experimental morphological and morphometric study of the antifibrotic function of blueberry and grape extracts was carried out on a model of lung injury in mice induced by intraperitoneal administration of bleomycin. During intraperitoneal administration of bleomycin to mice, acute and subacute damage to the pulmonary system was noted. Both patterns had the same prevalence and severity. The administration of polyphenolic extracts of blueberry and grape to mice showed a significant reduction in the severity of the acute and subacute pattern of lung injury. Blueberry and grape extracts reduce the acute phase of damage to the microvasculature, enhance phagocytic function, have an anti-inflammatory effect, reducing the degree of lymphohistiocytic infiltration and locoregional foci of residual inflammatory effects.


Se realizó un estudio experimental morfológico y morfométrico de la función antifibrótica de extractos de arándano y uva en un modelo de lesión pulmonar en ratones inducida por la administración intraperitoneal de bleomicina. Durante la administración intraperitoneal de bleomicina a ratones, se observaron daños agudos y subagudos en el sistema pulmonar. Ambos patrones tuvieron la misma prevalencia y severidad. La administración de extractos polifenólicos de arándano y uva a ratones mostró una reducción significativa en la severidad del patrón agudo y subagudo de lesión pulmonar. Los extractos de arándano y uva reducen la fase aguda del daño a la microvasculatura, mejoran la función fagocítica, tienen un efecto antiinflamatorio, reducen el grado de infiltración linfohistiocítica y los focos locorregionales de efectos inflamatorios residuales.


Animals , Mice , Pulmonary Fibrosis/drug therapy , Bleomycin/toxicity , Plant Extracts/administration & dosage , Blueberry Plants/chemistry , Polyphenols/administration & dosage , Antifibrotic Agents/administration & dosage , Pulmonary Fibrosis/chemically induced , Disease Models, Animal , Antibiotics, Antineoplastic/toxicity
7.
Org Biomol Chem ; 20(45): 8962-8976, 2022 11 23.
Article En | MEDLINE | ID: mdl-36326164

Due to the growth in the incidence of diabetes mellitus throughout the world, the urgency in the search for new safe and effective inhibitors of α-amylase and α-glucosidase is increasing. In this work, we attempted to carry out studies on the synthesis, modification and comprehensive computer and biological research of new derivatives of monothiooxamides. It was shown that monothiooxamides based on 3-aminopyridin-2(1H)-ones enter into transamidation reactions with hydrazine hydrate to form the corresponding thiohydrazides. Furthermore, under the action of chloroacetyl chloride and succinic anhydride, these thiohydrazides are cyclized into conjugated 1,3,4-thiadiazole derivatives. The possible biological activity of the obtained products was evaluated by molecular docking using the AutoDock Vina program. Compounds 7a and 8b showed higher binding affinities for selected target proteins compared to the known anti-diabetic drugs acarbose and TAK-875. The obtained new derivatives of 1,3,4-thiadiazole showed sufficiently high values of inhibitory activity in the in vitro test against the enzymes α-amylase and α-glucosidase as well as sufficiently low IC50 values (for 8b 122.2 µM), which is 8 times less than the value for the reference drug acarbose (998.3 µM). All synthesized derivatives of monothiooxamides 5-8(a-c) showed no cytotoxic properties at physiological concentrations in the MTT test in human neonatal dermal fibroblasts. Moreover, some compounds (6a-c, 7a-c, 8b,c) showed pronounced cytoprotective activity. Thus, the compounds 5-8(a-c) synthesized by us, both according to the results of computer calculations and in vitro biological screening, showed their potential antidiabetic activity and high prospects for further in-depth studies, including in vivo studies.


Thiadiazoles , alpha-Glucosidases , Humans , Acarbose , alpha-Amylases/chemistry , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Molecular Docking Simulation , Structure-Activity Relationship , Thiadiazoles/pharmacology , Thiadiazoles/chemistry
8.
Front Bioeng Biotechnol ; 10: 969282, 2022.
Article En | MEDLINE | ID: mdl-36394020

Reconstructed ACL cannot completely restore its functions due to absence of physiologically viable environment for optimal biomaterial-cell interaction. Currently available procedures only mechanically attach grafts to bone without any biological integration. How the ACL cells perform this biological attachment is not fully understood partly due to the absence of appropriate environment to test cell behavior both in vitro and in vivo. Availability of biomimetic models would enable the scientists to better explore the behavior of cells at health and during tissue healing. In this study, it is hypothesized that the collagen fibril diameter distribution in rat ACL changes from a bimodal distribution in the healthy ACL to a unimodal distribution after injury, and that this change can be mimicked in synthetic nanofiber-based constructs. This hypothesis was tested by first creating an injured rat ACL model by applying a mechanical tensile force to the healthy ACL tissue until rupture. Secondly, the collagen fibril diameter distributions of healthy and injured ACL tissue were determined, and polycaprolactone (PCL) constructs were created to mimic the distributions of collagen fibrils in healthy and injured tissues. Findings reveal that the fiber diameter distribution of aligned bimodal PCL constructs were similar to that of the collagen fibrils in native ACL tissue. This study is significant because suggested bimodal and unimodal fibrous model constructs, respectively, represent a healthy and injured tissue environment and the behavior of ACL cells cultured on these constructs may provide significant input on ACL regeneration mechanism.

9.
Acta Crystallogr C Struct Chem ; 78(Pt 10): 542-551, 2022 10 01.
Article En | MEDLINE | ID: mdl-36196787

2-Amino-1,5-diazaspiro[4.5]dec-1-en-5-ium salts possess bioactivity tuned by the nature of the heteroatoms in the six-membered ring and the counter-ion. The molecular environment of these cations in solids provides an opportunity to establish the conformations and hydrogen-bonding patterns typical for this family. ß-Aminopropioamidoxime tosylation products [2-amino-1,5-diazaspiro[4.5]dec-1-en-5-ium tosylates and the product of the O-tosylation of ß-(benzimidazol-1-yl)propioamidoxime, namely, 2-amino-1,5-diazaspiro[4.5]dec-1-en-5-ium tosylate, C8H16N3+·C7H7O3S- (6), 2-amino-8-oxa-1,5-diazaspiro[4.5]dec-1-en-5-ium tosylate, C7H14N3O+·C7H7O3S- (7), the monohydrate of 7, C7H14N3O+·C7H7O3S-·H2O (7a), 2-amino-8-thia-1,5-diazaspiro[4.5]dec-1-en-5-ium tosylate, C7H14N3S+·C7H7O3S- (8), 2-amino-8-phenyl-1,5,8-triazaspiro[4.5]dec-1-en-5-ium tosylate, C13H19N4+·C7H7O3S- (9), and 3-(1H-benzimidazol-1-yl)-N'-(tosyloxy)propanimidamide, C17H18N4O3S (10)] were investigated using X-ray diffraction to study peculiarities of their molecular geometry and intermolecular interactions. In vitro antitubercular and antidiabetic screening of the ß-aminopropioamidoxime tosylation products was also carried out. It was revealed that this series of compounds does not have activity against drug-sensitive and multidrug-resistant M. tuberculosis strains, and exhibits high and moderate antidiabetic α-amylase and α-glucosidase activity. Using the hydrogen-bond propensity tool, we found that the inclination of counter-ions and atoms to act as acceptors of hydrogen bonds for the amino group decreases passing from tosylate O atoms to water molecules and the N atoms of five-membered rings. This fact is probably the reason for the formation in the solids of hydrogen-bonded tetramers consisting of two anions and two cations, and the rare occurrence of 2-aminospiropyrazolinium salt hydrates.


Hypoglycemic Agents , Salts , Anions , Crystallography, X-Ray , Hydrogen , Hydrogen Bonding , Ions/chemistry , Molecular Structure , Salts/chemistry , Water , alpha-Amylases , alpha-Glucosidases
10.
Molecules ; 27(17)2022 Aug 23.
Article En | MEDLINE | ID: mdl-36080132

Currently, studies are being conducted on the possible role of the cytoprotective effect of biologically active substances in conditions of cerebral hypoxia or cardiomyopathies. At the same time, oxidative stress is considered one of the important mechanisms of cellular cytotoxicity and a target for the action of cytoprotectors. The aim of this study is to search for derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones. The probability of cytoprotective action was assessed by measuring cell viability using two tests (with neutral red dye and MTT test). It was found that some derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones under the conditions of our experiment had a pronounced cytoprotective activity, providing better cell survival in vitro, including the MTT test and conditions of blood hyperviscosity. To correlate the obtained results in vitro, molecular docking of the synthesized derivatives was also carried out. The standard drug omeprazole (co-crystallized with the enzyme) was used as a standard. It was shown that all synthesized derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones had higher affinity for the selected protein than the standard gastro-cytoprotector omeprazole. The studied derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones also fully satisfy Lipinski's rule of five (RO5), which increases their chances for possible use as orally active drugs with good absorption ability and moderate lipophilicity. Thus, the results obtained make it possible to evaluate derivatives of 3-(arylmethylamino)-6-methyl-4-phenylpyridin-2(1H)-ones as having a relatively high cytoprotective potential.


Omeprazole , Cell Survival , Molecular Docking Simulation , Omeprazole/pharmacology , Structure-Activity Relationship
11.
Molecules ; 27(12)2022 Jun 09.
Article En | MEDLINE | ID: mdl-35744830

The COVID-19 pandemic is ongoing as of mid-2022 and requires the development of new therapeutic drugs, because the existing clinically approved drugs are limited. In this work, seven derivatives of epoxybenzooxocinopyridine were synthesized and tested for the ability to inhibit the replication of the SARS-CoV-2 virus in cell cultures. Among the described compounds, six were not able to suppress the SARS-CoV-2 virus' replication. One compound, which is a derivative of epoxybenzooxocinopyridine with an attached side group of 3,4-dihydroquinoxalin-2-one, demonstrated antiviral activity comparable to that of one pharmaceutical drug. The described compound is a prospective lead substance, because the half-maximal effective concentration is 2.23 µg/µL, which is within a pharmacologically achievable range.


COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Pandemics , Prospective Studies , Pyridines/pharmacology
12.
Pharmaceuticals (Basel) ; 15(5)2022 May 17.
Article En | MEDLINE | ID: mdl-35631443

The synthetic compounds, Tilorone and Cridanimod, have the antiviral activity which initially had been ascribed to the capacity to induce interferon. Both drugs induce interferon in mice but not in humans. This study investigates whether these compounds have the antiviral activity in mice and rats since rats more closely resemble the human response. Viral-infection models were created in CD-1 mice and Wistar rats. Three strains of Venezuelan equine encephalitis virus were tested for the performance in these models. One virus strain is the molecularly cloned attenuated vaccine. The second strain has major virulence determinants converted to the wild-type state which are present in virulent strains. The third virus has wild-type virulence determinants, and in addition, is engineered to express green fluorescent protein. Experimentally infected animals received Tilorone or Cridanimod, and their treatment was equivalent to the pharmacopoeia-recomended human treatment regimen. Tilorone and Cridanimod show the antiviral activity in mice and rats and protect the mice from death. In rats, both drugs diminish the viremia. These drugs do not induce interferon-alpha or interferon-beta in rats. The presented observations allow postulating the existence of an interferon-independent and species-independent mechanism of action.

13.
Molecules ; 27(7)2022 Mar 28.
Article En | MEDLINE | ID: mdl-35408580

Nitrobenzenesulfochlorination of ß-aminopropioamidoximes leads to a set of products depending on the structure of the initial interacting substances and reaction conditions. Amidoximes, functionalized at the terminal C atom with six-membered N-heterocycles (piperidine, morpholine, thiomorpholine and phenylpiperazine), as a result of the spontaneous intramolecular heterocyclization of the intermediate reaction product of an SN2 substitution of a hydrogen atom in the oxime group of the amidoxime fragment by a nitrobenzenesulfonyl group, produce spiropyrazolinium ortho- or para-nitrobenzenesulfonates. An exception is ortho-nitrobenzenesulfochlorination of ß-(thiomorpholin-1-yl)propioamidoxime, which is regioselective at room temperature, producing two spiropyrazolinium salts (ortho-nitrobezenesulfonate and chloride), and regiospecific at the boiling point of the solvent, when only chloride is formed. The para-Nitrobezenesulfochlorination of ß-(benzimidazol-1-yl)propioamidoxime, due to the reduced nucleophilicity of the aromatic ß-amine nitrogen atom, is regiospecific at both temperatures, and produces the O-para-nitrobenzenesulfochlorination product. The antidiabetic screening of the new nitrobezenesulfochlorination amidoximes found promising samples with in vitro α-glucosidase activity higher than the reference drug acarbose. 1H-NMR spectroscopy and X-ray analysis revealed the slow inversion of six-membered heterocycles, and experimentally confirmed the presence of an unfavorable stereoisomer with an axial N-N bond in the pyrazolinium heterocycle.


Chlorides , Salts , Chlorides/chemistry , Hydrogen/chemistry , Hypoglycemic Agents , Stereoisomerism
14.
Front Pharmacol ; 12: 687763, 2021.
Article En | MEDLINE | ID: mdl-34616291

The aim of this study is determine the in vitro and in vivo antiradical properties and the cytoprotective activity of Allium nutans L. honey extract. The antiradical properties of the extracts were investigated in rabbit alveolar macrophages and human foreskin fibroblast (hFFs) cells in the presence of doxorubicin, a cytotoxic substance using DPPH and ABTS assays. The cytoprotective activities were determined using 18 Wistar rats divided into three different groups, a negative control, and two other groups with experimentally induced hepatotoxicity by a single intraperitoneal injection of 50% carbon tetrachloride (CCl4) oil solution. A positive control group, received drinking water only and an experimental group that was treated with Allium nutans L. honey extracts for 7 days. In vitro treatment with Allium nutans L. honey extracts resulted in 78% reduction in radical activity in DPPH and 91.6% inhibition using the ABTS. Also, honey extracts were able to preserve 100% of cell viability in the presence of the cytotoxic, doxorubicin. Furthermore, the treatment with honey extracts resulted in a significant reduction in damage to the structure of liver tissue, as well significant reduction in the levels of ALT and AST in the experimental group compared to the control group.

15.
Sci Rep ; 10(1): 14720, 2020 09 07.
Article En | MEDLINE | ID: mdl-32895481

Doxorubicin is a chemotherapeutic agent known to cause cardiotoxicity that is thought to be associated with oxidative stress. The aim of the current study is to investigate the role of grape polyphenols' antioxidant property as cardioprotective against doxorubicin-induced cardiotoxicity. Adult Wistar rats weighing 200 ± 20 g were divided into 3 different groups: a doxorubicin group that received a single intraperitoneal administration of doxorubicin (8.0 mg/kg body weight), an experimental group that received doxorubicin and grape polyphenol concentrate (25 mg/kg) via intragastric route, and the third group was a negative control group that received water only. On day 8, blood samples and tissues were harvested for analyses. The results indicated that grape polyphenol concentrate was able to reduce the signs of cardiotoxicity of doxorubicin through the reduction of aspartate aminotransferase activation, increasing the plasma antioxidant levels and decreasing the level of free radicals. The results also showed that grape polyphenol concentrate was able to reverse doxorubicin-induced microscopic myocardial damage. The myocardial protective effect of grape polyphenol might likely be due to the increase in the level and activity of the antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. In conclusion, grape polyphenol concentrate displayed cardioprotective effect and was able to reverse doxorubicin-induced-cardiomyopathy in experimental rats.


Cardiotoxicity/drug therapy , Doxorubicin/adverse effects , Grape Seed Extract/pharmacology , Heart/drug effects , Polyphenols/pharmacology , Protective Agents/pharmacology , Vitis/chemistry , Animals , Antioxidants/pharmacology , Cardiotoxicity/metabolism , Cardiotoxins/adverse effects , Catalase/metabolism , Glutathione Peroxidase/metabolism , Myocardium/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
16.
Int. j. morphol ; 35(4): 1233-1238, Dec. 2017. tab, graf
Article En | LILACS | ID: biblio-893120

SUMMARY: The aim of the study was to evaluate the osteoprotective properties of RNA-containing drug Osteochondrin S on rats with experimental model of osteoporosis. Osteochondrin S contains yeast RNA and RNA of connective tissue of cattle. In order to model osteoporosis in rats bilateral ovariectomy was used. Rats were divided into 3 groups: 1 - ovariectomized rats receiving Osteochondrin S; 2 - ovariectomized rats receiving saline; 3 - sham-ovariectomized rats. Rats in group 1 received Osteochondrin S, Group 2 - physiological saline three times a week for 12 weeks. Based on morphological data and on the results of densitometry, Osteochondrin S prevents a decrease in bone density, i.e. exhibits osteoprotective properties. Under the condition of lack of sex hormones in rats Osteochondrin S reduces reactive oxygen species in blood plasma and limits the degree of decrease in antioxidant capacity of blood plasma.


RESUMEN: El objetivo de este estudio fue evaluar las propiedades osteoprotectoras del fármaco que contiene ARN Osteocondrina S en ratas, como modelo experimental de osteoporosis. La Osteocondrina S contiene ARN de levadura y ARN de tejido conectivo de bovinos. Para modelar la osteoporosis en ratas se utilizó ovariectomía bilateral. Las ratas se dividieron en 3 grupos: grupo 1, ratas ovariectomizadas que recibieron Osteocondrin S; grupo 2, ratas ovariectomizadas recibieron solución salina; grupo 3 - ratas ovariectomizadas simuladas. Las ratas del grupo 1 recibieron Osteocondrina S, el grupo 2 solución de suero fisiológico tres veces por semana durante 12 semanas. En base a los datos morfológicos y los resultados de la densitometría, Osteocondrina S evita una disminución de la densidad ósea, es decir, exhibe propiedades osteoprotectoras. Ante la falta de hormonas sexuales en ratas, Osteocondrina S reduce las especies reactivas de oxígeno en el plasma sanguíneo y limita el grado de disminución de la capacidad antioxidante del plasma sanguíneo.


Animals , Female , Rats , Bone and Bones/drug effects , Nucleic Acids/therapeutic use , Osteoporosis/drug therapy , Disease Models, Animal , Gonadal Steroid Hormones/deficiency , Ovariectomy
17.
Med Eng Phys ; 38(9): 877-84, 2016 09.
Article En | MEDLINE | ID: mdl-27062487

Autologous red blood cell ghosts (RBC ghosts) can carry cytokines to the sites of inflammation. The targeting moiety of the RBC ghosts is associated with the nature of purulent inflammation, where the erythrocytes are phagocyted and encapsulated drugs are released. In the present study we have investigated the healing potential of RBC ghosts loaded with cytokine IL-1ß and antibiotic. Additionally, the pharmacokinetic properties of RBC ghosts loaded with IL-1ß were studied. 35 Male Wistar rats (250-300g) were used in the pharmacokinetic study and in a wound infection model where a suspension of Staphylococcus aureus was placed into a surgical cut of the skin and subcutaneous tissue in the femoral region. In order to monitor progression of the wound repair processes, wound swabs or aspiration biopsies were taken for analyses on the 1st-6th days. Wound repair dynamics assessment was based on suppression of S. aureus growth, signs of pain, time of disappearance of pus and infiltration around the wound. Visual observations, as well as microbiological and cytological analysis of wound exudates demonstrated a significant acceleration of healing processes in a group of animals treated with a local injection of IL-1ß and ceftriaxone encapsulated into RBC ghosts when compared to the animals treated either with a local or IM injection of free drugs. For the pharmacokinetic study, single IV injections of either free or encapsulated IL-1ß were made and the concentration of IL-1ß in serum samples and tissue homogenates were determined. Encapsulation in RBC ghosts improved pharmacokinetic profiles of IL-1ß by increasing the half-life, reducing its clearance, and increasing the deposition of the drug in the liver, spleen and lungs. These data suggest that RBC ghosts are effective drug carriers for targeted delivery of cytokines to the sites of inflammation, and have a potential for improving the treatment outcomes of purulent diseases.


Drug Carriers/metabolism , Erythrocytes/metabolism , Wound Infection/drug therapy , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacokinetics , Interleukin-1beta/pharmacology , Interleukin-1beta/therapeutic use , Male , Rats , Rats, Wistar , Tissue Distribution , Wound Healing/drug effects , Wound Infection/metabolism , Wound Infection/physiopathology
18.
Cent Asian J Glob Health ; 3(Suppl): 174, 2014.
Article En | MEDLINE | ID: mdl-29805903

INTRODUCTION: Nowadays, most of the research in the field of gerontology is focused on the effects of the grape polyphenols. In particular, resveratrol has been shown to increase life expectancy of various living organisms, including mammals. Resveratrol also plays an important role in cancer prevention and decreases the risk of developing cardiovascular disease. In our research, we proposed the development of the therapeutic product from Cabernet Sauvignon grapes that would exhibit the beneficial properties of polyphenols. Standard operating procedures were developed in our laboratories to collect alcohol free concentrate of polyphenols from the Kazakhstan Cabernet Sauvignon collection of grapes. The purpose of the study was to investigate the composition, biological safety, and potential therapeutic effects of the polyphenol concentrate. METHODS: The total polyphenol amount was determined using the Enology Analyzer Y15 (BioSystems, Spain). HPLC analysis of the polyphenol composition was performed using Agilent 1290 chromatograph. The polyphenol concentrate was analyzed for the microbiological purity and the presence of the toxic elements. The cytoprotective effect of the polyphenol concentrate was studied in experimental models of diabetes, toxic hepatitis, doxorubicin cardiomyopathy, and acute radiation sickness. RESULTS: The total polyphenol amount in one sample was 12,819 mg/l. Polyphenol composition analysis showed presence of the following polyphenols: catechin, epicatechin, gallic acid, quercetin, miricetin, 3-glucosylkaempferol, epicatechin gallate, 3-(3,4-Dihydroxyphenyl)-2-propenoic acid, catechin gallate, pitseid, kaempferol, n-hydroxy-cinnamic acid, resveratrol and chlorogenic acid. The concentrate was proven to be biologically safe and acceptable for use as a dietary supplement. The polyphenol concentrate demonstrated high antioxidant activity against ABTS and DPPH radicals in vitro. It also showed the following impacts on the various experimental models in vivo: reduction of sugar levels in diabetes; regeneration of the structure and function of the heart tissue in cardiomyopathy; regeneration of the nephron structure and function in nephropathy; regeneration of liver in toxic hepatitis; recovery of the antioxidant status in oxidative stress; and recovery of the hematopoiesis in acute radiation sickness. CONCLUSION: The polyphenol concentrate from Kazakhstan Cabernet Sauvignon collection of grapes was proved to be biologically safe and acceptable for use as a dietary supplement. The concentrate showed high antioxidant, antiradiation activity, and regenerative effect in diabetes, cardiomyopathy, nephropathy, and hepatitis in the corresponding organs.

19.
Cent Asian J Glob Health ; 3(Suppl): 184, 2014.
Article En | MEDLINE | ID: mdl-29805913

INTRODUCTION: Using autologous erythrocytes as drug carriers for targeted delivery of cytokines to the sites of inflammation could potentially provide new opportunities for treatment of patients with purulent diseases. The targeted characteristic of erythrocytes is associated with the nature of purulent inflammation, where a large amount of erythrocytes is phagocytized and drugs encapsulated into the erythrocytes could be easily released. On the other hand, autologous erythrocytes meet all the criteria for the ideal drug carrier. They are nontoxic, not immunogenic, and able to bear a large number of drug molecules while preserving an original conformation of the drugs. Thus, in this study, we aimed to analyze pharmacokinetic profiles of IL-1ß encapsulated into erythrocytes' ghosts (pharmacocytes) in comparison to intravenously injected free IL-1ß. MATERIAL AND METHODS: Albino rats were randomly divided into two groups, each group receiving a different kind of IV injection via the tail vein. Group A (control) received 500 µg of free IL-1ß, and group B received an injection of 1 ml of pharmacocytes loaded with 500 µg of test substance. At fixed time points after injection (15, 30, 60, 180, 540, 720, and 1,440 minutes) serum samples were collected. Homogenates of liver, spleen, lung, heart, kidney, and adipose tissue were obtained 24 hours after injections. Concentration of the tested substance in the collected organs and blood plasma were measured by ELISA. RESULTS: We have observed an increased half-life period (T1/2) for encapsulated IL-1ß compared to the control. T1/2 for free IL-1ß was one hour, while administration of loaded pharmacocytes allowed the half-life period to increase by more than 15 fold (1,043.40 ± 137.92 min) preserving high level of IL-1ß activity in the blood samples up to 24 hours. The increased time of IL-1ß presence in the body when administered in the form of pharmacocytes could be explained by reduction of elimination constant (Cel) by 1.6 fold, and clearance (CLel) by more than 100 fold. We also observed an increased concentration of IL-1ß in liver, spleen, and lung over at least 24 hours. When administered in free form, IL-1ß disappeared from these organs within 6 hours. CONCLUSIONS: Pharmacocytes have shown to improve pharmacokinetic profiles of IL-1ß by increasing the half-life period of the cytokine, reducing its clearance and elimination as well as increasing the deposition of the drug in liver, spleen and lungs. These data suggest that pharmacocytes be effective drug carriers for targeted delivery of cytokines to the sites of inflammation and have a potential for improving the treatment outcomes of purulent diseases.

20.
Cent Asian J Glob Health ; 2(Suppl): 103, 2013.
Article En | MEDLINE | ID: mdl-29805862

INTRODUCTION: Transport systems based on autologous red blood cells for targeted drug delivery can be considered as a promising approach in the treatment of surgical infections. Experimental studies have revealed the feasibility of targeted drug delivery by encapsulation of cytokines and antibiotics into autologous erythrocyte ghosts. PURPOSE: To study biopharmaceutical characteristics of autologous erythrocyte ghosts containing cytokines and antibiotics (pharmacocytes). MATERIAL AND METHODS: The erythrocyte pharmacocytes were prepared by the hypotonic hemolysis method, or the use of human red blood cells. The association and dissociation indicators of rifampicin and cytokine substances with the erythrocyte ghosts were conducted using standard methods. RESULTS: We have defined the following extracellular concentrations to be optimal for deposition of drug substances into pharmacocytes: for rifampicin - 10 000 µ/ml, erythropoietin - 1000 IU/ml, TNF-a - 5000 IU/ml, IL-1-ß - 5000 U/ml, IFN-γ - 10 000ME/ml, IL-2 - 50 000 IU/ml, angiogenin - 0.04 mg/ml. Two types of correlations of cytokines and pharmacocytes were identified. In this study, we found that 40-60 % of the erythropoietin, IFN- γ and angiogenin were bound to red blood cells ghosts, more than 10% of which were bound irreversibly. For TNF-a, IL-1-ß and IL-2, the red blood cells ghosts were capable of binding and depositing within 10-20 % of the input extracellular concentration, and these bindings were almost completely reversible. The rifampicin was bound by red blood cells ghosts with 5 % efficiency and also completely reversibly. CONCLUSION: The study has shown the effectiveness of inclusion of the studied components, such as erythropoietin, IFN-γ and angiogenin into the red blood cells ghosts, with significant efficiency (40-60 %). It presents the potential of using this system in targeted delivery of cytokines and antibiotics for treatment of surgical infections, thus facilitating the reduction in toxicity and adverse systemic effects of drugs and improving the treatment results.

...